What is the equation of the unit circle?

Prepare for the ABCTE Secondary Math Exam with challenging questions, helpful hints, and detailed explanations. Equip yourself with the knowledge needed to excel in your certification test!

The equation of the unit circle is defined as the set of all points ((x, y)) that are at a distance of 1 unit from the origin ((0, 0)) in a Cartesian coordinate system. This relationship is captured mathematically through the equation (x^2 + y^2 = r^2), where (r) represents the radius of the circle.

For the unit circle specifically, the radius (r) is 1. Therefore, we substitute (r) with 1 in the general equation, resulting in (x^2 + y^2 = 1). This equation indicates that for any point on the unit circle, the sum of the squares of the x-coordinate and the y-coordinate will always equal 1, maintaining the circle's definition.

The choice that states (x^2 + y^2 = 1) is the correct representation of the unit circle because it accurately describes this geometric figure. The other choices either misrepresent the relationship or describe different figures entirely. For instance, (x^2 + y^2 = 0) describes a single point at the origin, (x^2 - y^2 = 1\

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy